当前位置: 首页  学术交流  学术报告

11月3日-物理学科云端学术报告(李春霞教授,首都师范大学;姚玉芹教授,中国农业大学)

作者:物电研究生办  发布者:物电研究生办   发布时间:2021-10-26  浏览次数:352

报告一:

【报告题目】On integrability of the $q$-difference two-dimensional Toda lattice equation

【报 告 人】李春霞教授,首都师范大学

【报告时间】113日下午1:30-2:30

【腾讯会议号】898 303 564

【报告摘要】As important extensions of the classical integrable systems, $q$-difference integrable systems are of great research interest. For the bilinear q-difference two-dimensional Toda lattice equation which can be reduced to the well-known two-dimensional Toda lattice equation by taking the continuum limit $q->0$, Ohta etc. considered its Wronskian-type determinant solutions by using the bilinear method. However, other important integrable properties remain unknown. Recently, we managed to derive its Lax pair, construct its Wronskian-type determinant solutions by Darboux transformation, and Grammian-type determinant solutions expressed in terms of quantum integrals by binary Darboux transformation. In addition, we obtained Wronskian-type determinant solutions and Grammian-type determinant solutions to the bilinear Backlund transformation for the bilinear q-difference two-dimensional Toda lattice equation as well. In fact, as parts of the Darboux transformation and binary Darboux transformation, we found that the $N$-step iterations of eigenfunctions give nothing but two types of solutions to the bilinear Backlund transformation, respectively.

报告二:

【报告题目】Dbar-穿衣法在矩阵NLS和导数NLS系统中的应用

【报 告 人】姚玉芹教授中国农业大学

【报告时间】113日下午2:30-3:30

【腾讯会议号】898 303 564

【报告摘要】首先,基于矩阵Dbar-方程,我们导出矩阵NLS方程和带非零边界条件的导数NLS方程,并利用Dbar-问题得到相应的Lax对。然后,利用Cauchy矩阵的性质,得到相应系统的孤子解、呼吸子解及呼吸子与孤子的相互作用。

【邀请人】林机 教授


欢迎各位老师和同学参加!