【报告题目】:Painlevesolitons and elliptic solitons of the nonlinear Schrodinger equations
【报 告 人】:楼森岳教授,宁波大学物理科学与技术学院
【报告时间】:2026年1月8号(星期四)上午10:00
【报告地点】:29-414
【报告摘要】:A novel symmetry decomposition approach is introduced to derive the so-called “Painlevé solitons” of the nonlinear Schrödinger (NLS) equations. These “Painlevé solitons” are defined as solitons that propagate against a Painlevé wave background, in analogy with the well-established concept of “elliptic solitons,” which refer to solitons on an elliptic wave background. While the combination of space-time translation invariance and the square eigenfunction symmetry leads to “elliptic solitons,” the interplay of scaling invariance, Galileo invariance, and the square eigenfunction symmetry can give rise to “Painlevé IV solitons” for the Ablowitz–Kaup–Newell–Segur system, which includes the NLS equation. Furthermore, by selecting special solutions of the Painlevé IV equation, certain types of algebraic solitons and parabolic cylindric function solitons can be obtained.
【报告人简介】:楼森岳,宁波大学物理科学与技术学院二级教授,博士生导师,国家自然科学基金杰出青年项目和多项重点项目主持人。获多次教育部和省自然科学奖一、二等奖。主要研究可积系统的数学物理问题。正确预言(1988)了Higgs粒子的质量范围(m_H~123GeV);宏观实验验证了双原子格点体系的孤子模式及从孤子到混沌的演化;提出或建立了形变映射、多线性分离变量、形式级数对称、非局域对称局域化、超对称系统玻色化、局域和非局域对称对偶、可积分解、形变术、超对称、任对称、暗方程、多地系统和多地物理学等非线性系统的理论或求解方法。